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SECTION I

INTRODUCTION

The calculation of the propagation and distribution

of transient electromagnetic energy within the internal

regions of aircraft and missiles frequently employs trans-

mission line theory. As outlined in other reports (re-es. 1,2,3)

solutions using this method often involve the assumptions

of having only a single conductor transmission line instead

of a multiconductor line, of considering only TEM modes

of propagation on the line, and of having a uniform trans-

mission line .

As indicated in ref. (2), a number of improvements

can be made to increase the modeling accuracy for treating

hese problems found in the area of electromagnetic pulse (EMP)

internal interaction. One general class of improvements con-

sists of adding a tee network of lumped , oassive elements to

an otherwise uniform transmission line , so as to account

for a perturbation in the local transmission line geometry .

1. Tesche, F.M., et al., “Internal Interaction Analysis:
Topological Concepts and Needed Model Improvements ,”
AFWL—TR—75-282, Air Force Weapons Laboratory , Kirtland
Air Force Base, NM, October 1975.

2. Tesche, F.M., et al., “Evaluation of Present Internal
EMP Interaction Technology : Description of Needed
Improvements,” AFWL-TR—75-288, Air Force Weapons
Laboratory , Kirtland Air Force Base, NM, October 1975.

3 Boeinq Aircraft Corporation , “ Common Mode Mode l Development
for Complex Cable Systems ,” Boeing Report D224-lOOlS—4 ,
June 19, 1973.
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Using this approach, an equivalent tee circuit for a

single cable clamp on a transmission line has been developed

in ref . ( 4). Other “canonical” problems which have been

recently investigated include a cable passing over a thin

septum (ref. 5), a cable passing near a hole in the ground

plane (ref. 6), and a cable with a sharp bend (ref. 7).

An investigation of actual aircraft cable layouts

shows that there is often more than just one perturbation

to a transmission line. Many times, multiple loading of

a transmission line will occur in a periodic fashion , as

in a transmission line passing over a series of ribs

within the aircraft, or for a line fastened periodically

to a metallic wall by cable clamps. In a recent report

(ref. 8), Lam investigated the behavior of a cable passing

4. Tesche, F.M., and T.K. Liu , “An Electric Model for a
Cable Clamp on a Single Wire Transmission Line,” AFWL-
TR-76-325, Air Force Weapons Laboratory , Kirtland Air

• Force Base , NM , December 1976.

5. Coen , S . ,  T .K .  Liu and F.M.  Tesche , “Calculation of the
Equivalent Capacitance of a Rib near a Single-Wire
Transmission Line,” AFWL—TR-77-60 , Air Force Weapons
Laboratory , Kirtland Air Force Base, NM, February 1977.

6. Lee, K.S.H., and F.C. Yang , “A Wire Passing by a Circular
Aperture in an Infinite Ground Plane,” AFWL—TR-77—
Air Force Weapons Laboratory , Kirtland Air Force Base,
NM, Febraury 1977.

7. Lam , J . ,  “Equivalent Lumped Parameters for a Bend in a
Two-Wire Transmission Line,” AFWL-TR-77-5, Air Force
Weapons Laboratory , Kirtland Air Force Base, NM,
January 1977.

8. Lam, J., “Propagation Characteristics of a Periodically
Loaded Transmission Line ,” AFWL-TR-76-324, Air Force
Weapons Laboratory, Kirtlarid Air Force Base , NM ,
December 1976.
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over periodic obstacles using Floquet’s theorem . By postu-

lating an infinite transmission line loaded at regular

intervals with ident~cal, symmetrical tee sections , the

dispersion relation for determining the wave propagation

was developed. This leads to various relations for the

propagation constant, pass and stop bands, and phase and group

velocity on the line.

Aircraft cables, however , rarely occur as a single

wire transmission line. Usually they are multiconductor

cables with a wide variety of loads. Nevertheless , such

cables are often modeled as a single wire transmission line

with an “appropriate” load impedance. The choice of the best

load impedance for the single wire model is an important

consideration for the use of this simplified internal inter-

action analysis technique.

This report investigates these various topics and

their importance in EMP analysis. Section II suggests ~

technique for determining when the effects of an isolated

perturbation along a single wire transmission line can be

ignored and when it must be considered in the analysis of

t ransient  currents flowing on the l ine. Section III  goes on

to consider the effects of more than one obstacle which is

periodically positioned along the line . Unlike the analysis

of r e f .  ( 8 )  , however , we consider a finite number of

9
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periodic obstacles and compare results with those obtained by

Floquet ‘s theorem.

Section IV discusses general multiconductor transmis-

sion line theory and the relation between the total or “bulk”

current on a multiconductor line and the current flowing on

a single conductor line having s~i tably chosen loads and

characteristic impedance. Specific formulae are presented

for determining these quantities for an aribtrary multicon-

ductor line, and a number of examples are given .

10 
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SECTION II

IMPORTANCE OF EFFECTS OF PERTURBING OBSTACLES

As described in refs. (4) throuqh (8 )  , the effects of

a localized discontinuity in an otherwise uniform transmission

line can be represented by a tee network of lumped, passive

• elements inserted in the transmission line. As an example ,

consider a single wire line over a ground plane and passing

near an electrically small obstacle , as in Figure 1. Figure 2

illustrates the transmission line model for this case, with

the obstacle effects represented by the capacitance and induc-

tance elements of the tee network.

t In applying the results of the canonical problems to

a single line model of aircraft wiring, it is often useful

• to estimate the overall effect of a particular line pertur-

bation before carrying out a complete transient analysis of

the transmission line. If a particular line perturbation will

only marginally affect the response at a load , then it need

not be considered in the transmission line model.

One measure of the importance of a line perturbation

is the reflection coefficient , ~~~~. This quantity is defined

as

V

11 
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OBSTACLE
GROUND
////////////////////////////7/////////

Figure 1. Uniform Transmission Line Passing
Near Obstacle

A L L B• —~W-—-r-~S.QS.—-- •
< UNIFORM LINE C~~ UNIFORM LINE

A’ 
_ _ _ _ _ _ _ _  

B’

Figure 2. Two-Port Network Representing Effect
of Obstacle
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where V is the reflected voltage wave (propagating to

the left of A—A ’ in Figure 2) and V~ is the incident voltage

wave. Of particular interest is the reflection coefficient

p at the terminals A-A ’ of the equivalent two—port network

• representing the perturbing obstacle.

The reflection coefficient at A-A ’ will depend

upon the termination impedance of the line to the right of

• terminals B-B ’ . However , since we are interested in the

effects of perturbing obstacle alone, it is convenient to

assume that the line connected to B-B ’ is perfectly

matched . In this manner , the reflection coefficient at

A—A ’ will depend only on the obstacle parameters , the

line characteristic impedance, and the operating radian

frequency ~~~~ .

As is well known (ref. 9 ), the reflection coefficient

at A—A ’ can be expressed as

z — zL cp = 
~ + ~ 

(1)
L c

where is the characteristic impedance of the transmission

line , and ZL is the load impedance presented by the circuit

and transmission line to the right of A—A ’.

Since the line to the right of B-B’ is assumed to

be matched , the load impedance ZL can be computed by

9. Ramo , S . , .  and J. Whinnery , Fields and Waves in Modern
Radic,  John Wiley & Sons , New York , 1964.
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considering the circuit shown in Figure 3. Using s = ~ + j W

for the complex frequency, where j  = JT , elementary

circuit analysis shows that the impedance at terminals A—A ’ is

53L2C + 52LCZ + 2sL + Z
ZL(s) = 2 

C C (2)
sLC + SCZc + 1

It is convenient to introduce a normalized frequency

p and a normalized impedance C as

p=s /L~ (3)

and

C = -.J~ ~3— 
(4)

so as to simplify Equation ( 2 ) .  In this manner , the impedance

can be written as

ZL(p) = ~ 
p 3C + P + 2pC + 1

- p + p / C + l

By inserting Equation (5) into Equation (1) and

simplifying , the reflection coefficient becomes

= 2 
+ 2 — 1/C 2) (6)

p (pC+2) + p(2C+l/C) + 2

14
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A L L B

ZL C

I S IB

Figure 3. Impedance at A-A ’ Presented
by Equivalent Tee Network Loaded
by Infinite Transmission Line
at B—B’ .
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It is important to realize that the values of L

and C in the equivalent tee Circuit for the obstacle may

be positive or negative quantities. Thus, care must be used

in evaluating Equations (3) and (4) for p and C . It

- 
may be seen that the following sets of values for p and

C must be used in evaluating Equation (6):

p = s/i~ L,C > 0

or 

C = ~~~~~~~~~ 
L,C < 0

p zj S \1JL CI 1 L < 0 \

I and I
\ C > oJ

or

-

• 
p = j s~~ I LC I f L > 0

I and

\ C < o

16
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The behavior of p as a function of frequency for

a specific set of obstacle parameters L and C gives an

indication of the importance of the obstacle interaction

on the transmission behavior. If, for example, the magnitude

of p is -
~~
y small for a particular L and C over a

specifi~~. ‘ange, the obstacle could be neglected

in the tr;. line model.

For tne case of L and C both positive or negative,

Figure 4 shows a plot of the magnitude of the reflection

• coefficient from Equation (6) as a function of the normalized

frequency , p wV LC , for various values of C . It can be

noted from Equation (6) that there is a zero in the ref lec-

• tion coefficient at the frequency

• 
p0 = ± ~~/l/C

2 — 2  (7)

When C < /~/2 , this zero is real, occurring on the a

axis in the complex frequency plane. For C > v’~/ 2  , nowever ,

the zero is imaginary and is located along the ju axis.

Thus, we expect the curves of jp~ for C >0.707... to be

substantially different from those for ~I presented in

Figure 4.

Figure 5 shows the magnitude of the reflection coef-

ficient vs. normalized frequency for various C > 0.707..

I
17
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Figure 5. Plot of Reflection Coefficient
Magnitude vs. Normalized Frequency
for C ~ 0.707.
(L and C both have same sign.)
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The effect of the zero in the reflection coefficient is

clearly indicated.

For many EMP problems, it is expected that the re-

flection coefficient of a perturbing obstacle will be rather

small, especially near the low-frequency end —~f the EMP

spectrum. Since Figures 4 and 5 have poor resolution for

low frequencies, Figures 6 and 7 show the reflection coef-

ficient for a range of ~~~~ from 0 to 0.1

A similar set of curves can be drawn for the case

when L and C are of opposite signs. A careful examination

of this case shows that there is no resonance effect which

caused the null in the reflection coefficient for certain

values of C in the previous case. The curves for p
~ 

in

this case are all monotonically increasing functions of

normalized frequency (AJ ’JILCI and are shown in Figures 8

and 9 for the range of 0 to 4 in normalized frequency .

As in the previous case, the family of curves exhibit a

decreasing dependence on CI for 0 < C I  < 0.707 and

an increasing dependence for ! C I  > 0.707

Figures 10 and 11 present the reflection coefficients

for the same cases over a smaller frequency interval to

illustrate the low frequency behavior more clearly.

In some instances , it may be expected that an obstacle

will present a strong capacitive discontinuity to the

20
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Magnitude vs. Normalized Frequency for
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(L and C both have the same sign.)
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Figure 7. Expanded Plot of Reflection Coefficient
Magnitude vs. Normalized Frequency for
C > 0.707.
(L and C both have the same sign.)

22

~~~~ :. ~T ’ ------ • - •--- - -.--- ~~~~~~~~ • •~~- S —- •



—-5 - -- .• --——— --- ‘--5. ,- - -—--5 .~~~---•--5~~~~~~

1.0

- 
- —‘~~~~~~~~~~~

j — . 01
- / — ~~~~~~~/7~~~ 05

.7  ‘ “ 7~~~i
/ ,‘7~~~2

-
.

•8 : . .~~~~~~~~~~~~~~ 4

and .707

.6 -
-

I~ I .1 -r

.5 /
I

.4 /

.1

0 . .-
.5 

No~~alized Fr:q:en:y 
_ _ _  

4.0

Figure 8. Plot of Reflection Coefficient
Magni tude vs. Normal ized Frequency
for C I  ~ 0.707.(L and C have opposite signs.)

23

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~
_j

~~~~~~~~~~
- P ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~ ~~~~ 
- 

- •  
-

~~ 
-



~~~~~ • -- 
~~‘ • “ ‘•

~ -fl ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-- -fl- ‘—5 —‘5- --~~~~ —— ~~~~~~ ‘5-  •— • -—-------- -— -——.- --~~~ ~~~~~

1.0 
:~~~~~~

- -
~~~~~~~

-
~~~~~~~ 

-

= 109 
/ - 5

.8

.7 i!,

74. .
.6 ~~ / ,  

)
~~8 and .707

~~~~ i
i

~ ~
)I!

• -‘I:: ~‘
.2

.1 -

0
• 0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Normalized Frequency ur~JILC I

Figure 9. Plot of Reflection Coefficient
Magnitude vs. Normalized Frequency
for C I ~ 0.707.
(L and C have opposite signs.)

24

• --- . • fl • - •- . • . - -—- - - .~~~~~~~~~~~ M 
T-~~~ ________



~ ‘5-~ 

:i-~~-:-

• 

1.0 

ICI

I I 

~ 

-

.4  

/
/ 
/

//

~
/

/Z 

1

• Normalized Frequency ~~~~~~s f I L C l

Figure 10. Expanded Plot of Reflection Coefficient
Ma9nitude vs. Normalized Frequency for

CI ~~. 0.707.
(L and C have opposite signs.)

25

~~~~~~~~ ~~j ~ ~~~~~~~~~~~~~~~~~~



.8

~~~~~~~~~~~~~

-

~~~~~ 

o 6 0

Normalized Freauency w-4I LC I

Figure 11. Expanded Plot of Reflection Coefficient
Magnitude VS. Normalized Frequency for
I C !  1 0.707.
(L and C have opposite s igns .)

26

_ _  -- - —~~~~~-- - - __
•:2\ ,



_ _ _ _ _ _ _  • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

transmission line, with the inductance elements of the

two—port network in Figure 2 being either absent or having

very small values. Such was the case in ref. (5). Under

these circumstances it is difficult to employ Figures 4

through 11 to assess the importance of the obstacle, since

the normalized frequency p approaches zero and the

normalized impedance approaches either zero or infinity

at the same time.

To consider this case, the load impedance at A-A ’

for zero inductance can be writ ten directly from Equation ( 2 )

as

ZL (s) = 5~~:c+ 1 
(8)

which immediately gives a reflection coefficient from

Equation (1) as

- 
• sCzcp ( s) = — sCz

~ 
+ 2

Defining a new normalized complex frequency S~ as

Sn = sCZ~ (10)

the reflection coefficient becomes

—s
° (sr) Sn + 2 ( 11)
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In a similar fashion, if the obstacle presents

only an inductive discontinuity , the impedance at A-A ’ is

ZL(s) = Z + 2sL (12)

and the reflection coefficient becomes

p (sn) = s~

5

~ 2 
(13)

where the complex frequency Sn now takes the value

sn = (14)

Notice that the magnitude of p from Equations (11)

or (13) is not dependent on the sign of L or C. Moreover,

the magnitudes of Equations (11) and (13) are identical.

Hence, only one plot of this simple function is presented

in Figure 12.

As an example of the use of these curves, suppose that

a transmission line with a characteristic impedance

Z~ = 100 ohms passes near a perturbing obstacle. If the

values of inductance and capacitance are found to be

L = 2.5~ l0~~ henrys and C 6xl0 12 
farads from the

solution of a particular canonical problem , the normalized

28
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Figure 12. Plot of Reflection Coefficient Magnitude
vs. Normalized Frequency for Inductive
or Capacitive Discontinuity .
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impedance C becomes

C = 

~~ ~
L .204 (15)

and the normalized complex frequency p becomes

p = s = l .2 2 5x l0~~~
0 s (16)

In looking at the imaginary part of the normalized frequency ,

denoted by ‘
~norm (i.e., p = a m + jw ) ,  we have

~norm = l.225xl0~~
0 w (17)

If one assumes that the effects of a reflection coef-

ficient magnitude of less than 0.1 can be safely ignored in the

analysis using the transmission line model, it is then

possible to determine the frequency range over which this

approximation is valid. For example , from Figure 6 it is

noted that for C = 0.2, p
~ 

is less than 0.1 for the

normalized frequency w~ less than about 0.05 . Hence,

for radian frequencies w such that

.05 
—10 = 4.08x108 rad/sec

1. 225x10

30
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or frequencies f so that

f < 64.9 megahertz

the effects  of the line perturbation can be ignored . Above

this frequency , of course , the effects become more pronounced

and the overall transmission line model should then include

the equivalent tee circuit.
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SECTION III

CONSIDERATIONS FOR PERIODICALLY LOADED TRANSMISSION LINES

In the last section, the reflection coefficient for a

single equivalent tee network on an infinite transmission

line was considered. It was suggested that if the reflection

coefficient were sufficiently small, the effects of the net-

work in question could be neglected. This analysis, however ,

was based on the assumption that the line to the right of

the network was infinite and uniform.

As has been noted in ref. ( 2), aircraft cables often

see periodic perturbations along their lengths. Mutual

interaction between two adjacent line perturbations can

cause a substantial difference in line behavior from the

single perturbation case. Hence, lines with periodically

spaced discontinuities should be treated with care.

Ref. ( 8) has investigated the behavior of infinitely

long, periodically loaded transmission lines using Floquet’s

theorem. Various relations for the propagation constant,

pass and stop bands , as well as phase and group velocities

were developed . The use of the above approach suffers from

a number of difficulties , however. In the actual problem ,

one is interested in finite lines , not infinite ones. More-

over , it is not usually required to determine the line

voltage or current at a point on the transmission line , but

32
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rather , at the load end of the line. This cannot be computed

using the Floquet theorem approach. In addition, the impact

of periodic loading on the behavior of the transient

results is not immediately obvious from the infinite line

results.

This section investigates the effect of periodic

loading on a finite length of transmission line, and compares

the results, when possible, to those obtained from Floquet ’s

theorem.

Consider a transmission line of total length L,

characteristic impedance Z and propagation constant ‘y.

At N points along the transmission line, there are

perturbations in the line, and their effects are represented

by a series of lumped parameter tee networks, as shown

in Figure 13. These line perturbations are assumed to be

at distance 9. apart, and the physical size of the pertur-

bation is assumed to be small compared to 9. . Due to the

periodicity of the line loading , the entire line may be

thought of as consisting of N cascaded fundamental

sections of line, as shown in Figure l3h , plus a load and

source section which are uniform lines of lengths •9.L

and Z~ respectively .

In this manner , the entire line may be represented

as shown in Figure 13c , with the condition

33
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Figure 13. Geometry of the Finite , Periodically
Loaded Transmission Line
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9.S + 9 .L +N9. L (18)

being enforced .

We are interested in computing the transient voltage

induced across the load impedance ZL. For convenience,

we will assume that the source voltage is a step function

in time occurring at t = 0. To obtain this transient

result, we will first obtain a time harmonic expression

for the load voltage (e3~
t time dependence assumed) and

later construct the time domain result using Fast Fourier

Transform (FFT) methods.

The analysis of a number of transmission lines

which are cascaded together (or for that matter, any two—

port network) is facilitated by using the chain (or trans-

mission) parameters (ref. 10). Considerinq a linear two—port

network in Figure 14a, the chain parameters A , B, C, D may

be used to express V1 and I~ in terms of V2 and 12

as

~ 

V
11 1A B1 [ ~2 ] (19)

L I 1J LC DJ L_ I2J

10. Seshu , S., and N. Balabanian , Linear Network Analys:s,
John Wiley & Sons , New York , 1959.
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Figure 14. Voltage and Current Directions
of Two-Port Network.
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For two networks connected , as in Figure 14b, the V—I

relationship is given by the product of two matrices as

lv ii = I V2~
I 1= T1’T2 (20)

L.1lJ V’2J

where is the matrix for the first network given by

= fA 1 B1] (21)

Ldl D1j

and is given by

I~ B2~
= ) (22)
LC2 D 2j

The fundamental section which comprises the trans-

mission line can be viewed as consistiflq of two parts,

as illustrated in Figure 1 .  The first is a uniform trans-

mission line of length 9. and the second is the tee

network .

From simple transmission line theory (ref. 11), the

transmission matrix for a line of length 9. is given by

11. Kin g , R.W.P., TransmisSiOfl Line Theory, Dover , 1965.
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Figure 15. Fundamental Section for Periodic
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— ~ 
cosh (-yZ) zo sin h ( y z ) ~

= I I (23 )

L -
~~~

- sinh(y9.) cosh(yP.) J

where y is the propagation constant of the line.

Similarly, simple circuit analysis applied to the

equivalent “T” circuit representing the discontinuity

gives the following transmission matrix:

z
1 + ~L (Z1Z2 + Z 12 3 + Z2Z3)

= 3 3
T2 = (24 )

.
z3 z3 

-

Following Equation (20) , the fundamental section of the
periodic line can now be described by the transmission

matrix , Ts where

= T
1~ T2

which when expanded out, becomes
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{c
osh (Y9.) (l+~~~) 

+ ~~~~~~ sinh (~9.)] 
[ 

cos~~~~ (Z1z2+Z1Z3+Z2Z3
)

+ sinh(y9.) (i+~.a)]
Ts 

‘ 

sinh(y9.) + 
cosh.(~9.)] 

[ 

sin~~yz~ (Z1Z2+Z1Z3+Z2Z3)

+ cosh(y9.) (1 + 

~
.)]

(2 5 )

Using this last expression for the transmission through

a single fundamental section, the transmission matrix for

the entire N section transmission line is given by

= = — N —
TT TQ~ (Ts) •TL 

(26)

where is the transmission line matrix for the line of

length 9.~ and is given by Equation (23) with ~ =

Similarly , TL is the transmission matrix for the line of

length 9.L Denoting the individual elements of the total

transmission matrix TT as AT , BT , CT and DT , the

V—I relationship for the entire line is then given by
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[V ol [A T 
BT1IV L1 

- 

(27 )

L 10J LCT DTJL-ILJ

At the load , we have the relation that

VL = 
~
ZL ‘L 

(28)

where the minus sign occurs due to our choice of the

direction of current flow . Similarly , at the source end

of the line, the relationship

V~ = V0 + Z~ 1~ (29)

holds.

Substituting these last two equations into Equation (27),

we can solve for the load voltage VL as

VL = ZLAT + BT ± Z~ (ZLCT + DT ) ( 30 )

This expression can be easily evaluated for a large number

of frequencies by first performing the chain of matrix

multiplications indicated by Equation (26) and then obtaining

the parameters AT 3T CT 
, and DT. The time—dependent

voltage vL (t) is then obtained by Fourier inversion.
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As an example of the effects of periodic loading on

finite transmission lines, a simple tee network model of a

cable clamp was used to represent the periodic perturba-

tions on the transmission line . The actual line geometry

• was that illustrated in Figure l3b , with the lengths

and 9.L set to zero.

For this example, the series impedance elements

• and were chosen to be inductors of l.0x10 9

henrys each, and the shunt impedance element, Z3 , was a

capacitor of 9.7xl0 12 farads. For this case, the unper-

turbed transmission line characteristic impedance was assumed

to be 120 ohms, a value which is consistent with the dimen—

sions of the transmission line passing through the cable

clamp . It was assumed that there was a 0.4 meter seoaration

• 

‘ 
between clamps, so that the fundamental section parameters,

as shown in Figure 15, take on the following values:

Z~~~ = 120 (ohms ) -

~ =jw/3xl0
8 (meter ~~)

9. = .4 (meter)

Z1 = = jw l.0x10 9 (ohms)

= l./(jwx9.7xl0~~
2) (ohms)

It was assumed that the source and load impedances of the

transmission line , and , were equal to the line
impedance .
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Figure 16 shows the magnitude of the load voltage

VL as a function of frequency for various numbers of cable

clamps. This represents the delta function spectrum of

the load voltage, since the excitation voltage V5 was

taken to be unity for all frequencies.

For N = 0 (i.e., no cable clamps present), it is

seen that the load response is constant in frequency ,

with a value of 0.5 times the source voltage. As the

number of line perturbations increases , it is apparent

that distinct pass and stop bands begin to form.

Equations (29) of ref. C 8 ) provides a transcendental

equation for the pass and stop band frequencies for the

infinite transmission line. These frequency bands are

illustrated on Figure 16 for comparison. As may be noted ,

• the pass—stop band structure begins to develop with only

two perturbations on the line, and with 10 perturbations ,

• the pass-stop frequencies agree very well with the infinite

case.

One difficulty with the infinite line analysis is

that there is no information easily obtainable regarding

the transient response of the loaded transmission line . 
•

Figure 17 shows the computed normalized time domain load

voltage for a step—excited source and various numbers of

- 43
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cable clamps. In each case , the origin t = 0 has been

shifted by a time corresponding to the wave transit time

from the source to the load through a transmission line

of total length L = N9.. Thus, if the effect of the

clamps were negligibly small, each of the curves would

turn on at t = 0. The cable clamps, however , introduce

an additional time delay in the signal arrival , as is

seen from Figure 17. As more sections are considered , this

time delay grows, but the resulting peak value of the load

voltage does not change radically . However, the response rise

time becomes slower as the numbers of sections are increased .

In Figures 16 and 17, as more cable clamps

were considered , the total transmission line became longer.

It is of some interest to consider a fixed length of line

and observe the effects of increasing the number of line

perturbations. Figures l8a throughl8e show the delta function

magnitude spectrum and step function transient response

for the load voltage across a line of total length

L 8 meters. As before , the characteristic impedance

was chosen to be 120 ohms, to be consistent with the cable

clamp dimensions , and the line was terminated in this impe—

dance at both ends.

For no line perturbation , the voltage magnitude

spectrum is a constant of value 0.5 and the step response

is a step occurring at t = 0. These results are not

46
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presented due to their simplicity . Figure l8a treats

the case of a single clamp on the transmission line.

The clamp in this case is located at the load end of

the line. The effect of this clamp on the load voltage

shows up in a high frequency roll—off of the voltage

spectrum , and a decrease in the rise time of the transient

voltage. For the particular values of impedance elements

for the clamp model, it is seen that the effect of the

clamp on the load voltage is not particularly significant.

Figures 18b-e show the impluse spectrum and step

response of the load voltage for various numbers of identical

clamps spaced equally on the transmission line of 8 meters

in length. These cases are considerably different from

the case of a single clamp , due to the reflection of

waves within the various peaks occurring in the transient

response, as well as create the pass—stop band structure

in the spectrum.

In some circumstances , a set of obstacles near the

transmission line may present only a strong capacitive

discontinuity to waves propagating on the line . In these

cases, we may neglect the inductive elements in the Tee

model of the obstacle and treat the line with periodic

capacitive loading . Such would be the case of a line

passing over a series of thin ribs protruding from the
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t i n s )
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Figure l8a. Magnitude of load voltage impulse spectrum Ci)
and step excited time response (ii) for an
8—meter line with 1 cable clamp .
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Figure l8b. Magnitude of load voltage impulse spectrum (i)
and step excited time response (ii) for an
8-meter line with 2 cable clamps .
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Figure 18c. Magnitude of load voltage impulse spectrum Ci)

and step excited -time response (ii) for an
8—meter line with 3 cable clamps .
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Figure 18d. Magnitude of load voltage impulse spectrum Ci )
and step excited tirie response (ii) for an
8-meter line with 5 cable clamps .
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Figure 18e. Magnitude of load voltage impulse spectrum Ci)
and step excited time response (ii) for an
8—meter line with 10 cable clamps.
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ground plane . Figures l9a through l9e show the effects of

such periodic capacitance loading on a typical transmission

line.

For this example , a transmission line of character-

istic impedance Z0 = 100 ~2 and length L = 8 meters was

loaded with 10 equally spaced capacitances . The line was

matched at both the input and output ends and the load voltage

impulse spectrum and step response was computed for various

values of capacitive loading . For the transmission line

under consideration, the line capacitance per unit lenqth C1

was 3.33xl0~~
0 farads/meter , thus giving a total capacitance

of C5 = C ’ xZ = 2.66x10 1
~
0 farads for each section of

transmission line between the periodic capacitances . values

of the capacitive loading were C/Ce = 0.00375 , 0 .0375 , 0.1, 0.1875 ,

and 0.375 , where C represents the capacitance of the rib .

As may be noted in Figure 19 , the presence of the

capacitance discontinuit ies  has a marked e f fec t  on the

spectrum of the load voltage. However , for the transient

response , the major effect of the periodic loaclina is in

a time delay caused by a s lowing of the group velocity on

the transmission line . The peak of the transient voltage wave-

form across the load at times exceeds the voltage pre-

dicted without considering the capacitances in the line .

This over-voltage , however is seen to be only about 25%

of the peak value in the wors t case , an d may not be
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particularly important if only order of magnitude responses

• are desired . Figure 20 shows the difference between the peak

voltage with the capacitance present, and the voltaae without

capacitance , expressed as a percentage of the latter , as a

function of the normalized discontinuity capacitance C/Ce

However , as observed in Figure 19 , the rise tirrte of the voltage

response increases for larger discontinuity capacitance .

It is difficult to draw many general conclusions from

• this study of a particular line perturbation other than to

• say that care should be exercised in defining the electrical

model for internal EM? calculations. Periodically spaced

obstacles can have a marked effect on transmission line

behavior and may be required in a model if accurate results

are desired . The techniques discussed here can be easily

utilized in a transmission line analysis for treating a

specific case.

From an examination of the computed results in the -
•

previous figures , it is apparent that there is a much more

pronounced effect in the frequency domain response than in

the transient results. This is because the step function

voltage driving the transmission line has a rather large

bandwidth , encompassing many pass and stop bands. The effects

of the pass—stop band nature are therefore somewhat masked

through the Fourier transform process in going to the time

domain .

If one assumes a more realistic voltage waveform ,

such as a damped sine wave, which would correspond to the

excitation provided by skin currents and charges induced on
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the exterior of an aircraft, it is expected that the pass—

stop band nature of the frequency response would be much more

important for the transient response. This would be

especially true if the fundamental frequency of oscillation

of the excitation occurred in the region of a stop band.

In that case, very little EMP energy would be transmitted

to the load. Such effects must be carefully considered

in an EMP system assessment.
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SECTION Iv

RELATIONSHIPS BETWEEN SINGLE-WIRE TRANSMISSION LINE

CURRENT AND THE BULK CURRENT ON A MULTICONDUCTOR LINE

An often used technique for analyzing internal inter-

action problems is to model multiconductor transmission lines

by single wire transmission lines . Not only are the formu-

lation and analysis of problems made simpler , but the computer

programs needed to obtain numerical results are relatively

simple to write and they execute quickly . -

In performing such a simplified analysis, it is

desirable to determine the appropriate single line parameters

in terms of the parameters defining the multiconductor line.

One way to do this is to require that the current on the

single wire transmission line have similar behavior to the

bulk or total current flowing on a multiconductor line . To

assure this requirement , it is necessary to choose an

optimum load impedance and characteristic line impedance for

the single wire model , using knowledge of the multiconductor

line. An alternate way is to equate the single—wire voltage

to the averaged quantity of the voltages on the multiconductor

line. However, this latter method is not studied here.

Consider an N wire multiconductor transmission line ,

as shown in Figure 2la. At z = 0 there is a generalized

termination impedance matrix and at z = 2. , there is

a similar impedance 
~~ 

. At an arbitrary position along

the line, there are N voltages relative to the reference

conductor (the 0th wire) which are represented in vector
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form as ~ (z) . Similarly, the wire currents are denoted

as Y(z). Both I and V are complex N-vectors. It is

desired to represent the behavior of the bulk current on

this multiconductor transmission line by the single

line illustrated in Figure 2lb with appropriate choices of S

Z~ , Z~ and Z~ .

For the multiconductor transmission line, it is well

known that the spatial dependence of Y and ~ are des-

cribed by a set of 2N transmission line equations given

in ref. (12) as

~ 
(;~)= - ~(; !) (~

) (31)

where s is the complex frequency , ~~

‘ is an NxN zero

matrix, L and C are respectively the per—unit-length

inductance matrix and the per-unit-length capacitance

matrix , both being NxN in dimension .

Equation (31) must be solved subject to the appropriate

boundary conditions at z 0 and z = z. For the example

of Figure 21 , it is seen that these conditions are

12. Kajfez , D., “Multi-Conductor Transmission Lines ,”
EMP Interaction Note Series, Note 151 , Air Force
Weapons Laboratory, Kirtland Air Force Base , NM ,
June 1972.
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~7(0) = — 

~ 
Y(0) (at z = 0) (32a )

and

= I(2~) (at z = U (32b)

Equation (31) can be decoupled to yield two second-

order differential equations for I and V as

a2Y ~2 ~~~~r(z) (33)

and

= ~2 ~ ~ (34)

As discussed by Liu (ref. 13) , the product ~

in Equation (33) is often assumed to be a diagonal matrix

of the form

(35)

where ~ is the NXN unity matrix and v is the propa-

gation velocity of waves on the line . This special case

occurs for wires in a homogeneous medium .

13 . Liu , T., “Elec tromagnetic Coupl ing between Mult icon ductor
Transmission Lines in a Homogeneous Medium ,” AFWL-TR-76-
333 , Air Force Weapons Laboratory , Kirtland Air Force
Base , NM, December 197 6.
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For a multiconductor transmission line in an inhomo-

geneous dielectric region , such as a bundle of wires each

having a dielectric insulation sheath , it is possible to

have multiple wave velocities on the transmission line. In

that case, moreover, the product ~ ~ is not a simple

• diagonal matrix as in Equation (35).

As discussed in a series of papers by Paul (ref s. 14,15 ,16),

it is possible to diagonalize ~ ~ through the use of a

nonsingular NXN matrix denoted by T , so that

.2 
= ~

2 ~—l ~ (36)

where ~‘2 is an nxn diagonal matrix with real positive

and nonzero scalars on the diagonal and zero for the

of f-diagonal elements.

As discussed by Paul (ref. 14) , the matrix ~ is easily

constructed from the solutions to the eigenvalue equation

14. Paul, C.R., “On Uniform Multimode Transmission Lines ,”
IEEE Trans. M.T.T., Vol. MTT-21, No. 8, August 1973 ,
pp. 556—558.

15. Paul, C.R., “Efficient Numerical Computation of the
Frequency Response of Cables Illuminated by an Electro-
magnetic Field ,” IEEE Trans. M.T.T., Vol. MTT—52 , No. 4,
April 1974, pp. 454—457.

16. Paul , C.R. , “Useful Matrix Chain Parameter Identities
for the Analysis of Multiconductor Transmission Lines,”
IEEE Trans. M.T.T., September 1975 , pp. 756—760.
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(37 )

where is the current eigenvector associated with the

eigenvalue . The matrix ~ is then constructed with

various columns being the eigenvector , as

(38)

It is to be noted that the current eigenvectors , , are

not functions of position along the line. Physically , these

correspond to the d istribution of currents on each wire

which will propagate together with a propagation constant

Yi

By introducing a change of variables in the line

current as

Y(z) = 

~ 
r~ C -U (39)

where T C z ) represents modal currents , the wave equation

for the currents becomes

(z)
m 

= ~2 ~-~l ~ 
~ ~m 

(40)
dz

or , upon using Equa tion (36)
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d2Y (z) 2_ ‘( t m

This equation represents N decoupled scalar equations

since the matrix V 2 is diagonalized . The solution to

Equation (41) can be written by inspection as

= e ’
~ ~~ + eYZ ~Z (42 )

where ~~ and ~~ represent the magnitudes of forward

and backward propagating modes and the term e1Z is a

NxN diagonal matrix with elements e1~ ,j e and

e’~~~~ = 0 for i, j=l ,. ..N and i~ j.

From Equations (39) and (42), the line current can be

expressed directly as

Y(z) = T (e~~~ 
—+ 

+ e~~ ~~) (43)

This last equation can be regarded as the superposition

of two traveling waves , as

1(z) = I~~(z) ÷ 1 (z) (44)

where the superscripts + and - ind ica te the propagation

direction in z.
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The voltage on the line can now be found from a

portion of Equation C31) as

dI (z) 
= —s ~ ~~(z) 

(45)

Using Equation (43) we obtain

~ (z) = ~—l ~ ~ ~—1 {~~(e~~~ ~~ 
- e’~ &~ )J (46)

and upon defining a characteristic impedance matrix as

.
~~~ ~-l~~~ y~~ -l (47)

C 5

the line voltage becomes

~Y ( z )  = Z T(e YZ 
~~ - e’~ ~~ ) (48 )

or , in terms of forward and backward traveling voltage waves ,

~ (z) = ~7~~(z) + V (z) (49)

In comparing Equations (43) and (49), it is noted

that the well-known relationship between the forward and

backward propagating line voltage and current waves exists:
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V~~(z) = 
~~~~~ 

I~~(z) (50a)

~i (z) = 

~~c 
Y~ (z) (50b)

The unknown modal coefficients cC~ and ct must be

determined through the use of the boundary conditions of

• Equations (32a) and C32b) .

By defining modal current reflection matrices,

p , as

= 

= ~~ l ~~ 
+ ~~~)-l (

~~ 
- ) ~ (at z = 0) (51)

and

= + 
~~~~~~~~~~~~~~~ 

(~~~~~ 
— 

~~~~~~~ ) ~ (at z = 94 (52)

solutions for &~ and ~~ can be obtained ~nd substituted

into Equation (43) to yield the following expression for

the current on the multiconductor line

Y(z) = ~ (e
1Z - e

z_ 2.) 
p2. e

’
~~) (13 - 

~~ 
e~~~ ~2. 

e~~~~)
1

< ~—l 
~ + ~~) 1 

~ 
(53)

The reflection matrix , p , provides information

on how a particular mode , say the ~th mode , reflects

and excites other modes which propagate away from the load.
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For example , the element is the self—reflection

coefficient for the ~
th mode, and 

~~~ 
is the coefficient

for determining the strength of the ~th reflected mode due

.thto the i. incident mode.

As can be seen from Equation (52), if the multiconductor

line is matched (i.e., =~~ =t~), the reflection matrix
is a zero matrix . Under this assumption , the relation for

the transmission line current from Equation (53) simplifies

considerably to yield

Y(z) = ~ e
’
~ ~—l (2~~~)~~~ ~s

For most EMP analysis problems , however , it is not possible

to assume a perfectly matched rnulticonductor line because,

as discussed in ref. (17), matched impedance load consists not

only of impedance elements from each wire to ground (the

diagonal terms in ZL) but also of impedances between the

various wires (the off diagonal terms in ZL).

The total or “bulk” current on the multiconductor

transmission line can be obtained by adc~inr~ all of the

individual wire currents found from Equation (53) as

IB (z) = 1(z). (55)

17 . Frankel , S., Cable and Multi-Conductor Transmission
Analysis, Harry Diamond Laboratories, HDL-TR-091-1,
June 1974.
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Here, 1(z). represents the ~th element of the line

current vector Y(z). As may be noted from Equation (53)

this is a very complicated function of the terminating

impedances 
~~ 

and

A similar scalar analysis of the transmission line of

Figure 2lb leads to the following equation for the single

line current:

~~~ 

— 

p
2. ~~~~~~~ v

1(z) = — 2y2. z z (56)
l — p 2. p5 e c 5

where

= 
+ 

(57)

and

~
S Z : + 

C (58)

As may be noted , this is simply the scalar version of

Equation (53).

The best choice of the single line loads Z5 and

so that the current 1(z) approximates IB (z) is not at

all obvious. It is possible, however , to make a few simpli-

fications of Equation (53) to gain insight into the modal

nature of the multiconductor current.
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A close examination of the current eigenmodes 7
j  

of

typical multiconductor cables (i.e., the columns of the T

matrix) shows that there is generally ore mode of the system

which is predominately a bulk mode and the rest of the modes

are predominately differential. Thus , in the use of

Equation (55) to define the bulk current, it is often found

that only one column of T contributes significantly to the

bulk current.

It is often convenient to make the assumption that all

modes propagate with the same velocity . Recent studies

(ref. 18) indicate that the effects of multivelocity modes

are not extremely important in determining the transient

response of a load for a step waveform. For others , it may

be important. This assumption is expressed in Equation

(35) and implies that the eigenvalues of the matrix C L

are all the same. Thus , the exponential matrix e ’
~ in

Equation (53) becomes e ’
~ U and the line current may be

simplified somewhat as

Y(z) = T(e~~~ U — e’~~~~
294 LL) (U 

— e
2’
~~ ~~

+ Z )~~
1 

~~

18. C.E. Baum, T.K. Liu , F. M . Tesche and 5.K. Chancy, “Numerical
Pesults for Multiconductor Transmission—Line Networks ,”
AFWL-TR-77-123 , Air Force Weaoons Labora tory , K ir tland
Air Force Base , NM , June 1977.
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Since the eigenvalues of ~ are identical for this

case, there is considerable freedom in choosing the trans-

formation matrix ~~~ . The main requirement is, of course,

that the eigenvectors of ~ L be linearly independent . One

particularly common choice for ~ is the identity matrix ,

U . This implies that for the ~
th mode , there is a unit

current on the .th wire with zero currents on all others.

With this choice of ~ , Equation (59) for the line

current reduces to

Y(z) = (e ’
~ ~ 

- e~~~~
2
~~ ~~ 

(D - e 2’
~
2. 

~~ ~~~~~~~~ 
÷~~~)-l 

~~

(60) 

- 1 —
which is the same as Equation (8) of ref. (13). Because each

mode contributes to the total or bulk current , it is necessary

to employ Equation (55) to calculate ‘B

It is possible , however , to simplify the analysis some—

what by choosing a different form of P. Consider a trans-

- 
formation matrix of the form -

1 -1 —l ...-1 -1

1 1 0...0 0

T = ~~~ 
0 1. ...? 9 (61)

i ~~~~ 0

1 0 0...0 1
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Note that the first mode (the first column of ~) is a pure

bulk mode , and the other modes give no contribution to the

bulk current. It may be easily demonstrated that these modes

are linearly independent , and thus will correctly represent

the current flowing on the multiconductor line .

From Equation (59), it is possible to identify various

mechanisms which excite the different modes on the trans-

mission line. The first, and most obvious , is the source

term . As shown in Figure 2la , 
~~ 

represents n

voltage sources at one end of the transmission line.

One could , by a clever choice of the elements of

determine an excitation which excites only the bulk mode.

This would be the V which satisfies the equation

ru
T :l

~(Z + Z ) 1 
~~ 

= 

~ 
[gj 

(62)

where c~. is an arbirary constant . Solving for , we

f ind

rh
= + Z~~~) T [~J 

( 6 3)

and upon performing the multiplication the ~ matrix

given in Equation (61) and the vector
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‘
~~ 

may be expressed as

Ill
11

= 
~~ ~~c 

+ ~~~~~~~~ (64)

or, equivalently, in component form as S

~s. ~~~ ~~ ~c. ~~~~~~~~~~~~~~~~~ 

(65)

:3=1 1,3 1 , 3

Thus, when the N wire voltage sources satisfy

Equation (65), only the bulk mode will be excited . For a

realistic cable, however , there is no way to assure that

the excitation will be of this type. It should be noted

in passing that a similar development can be carried out

for current sources exciting the multicoriductor line. An

incident electromagnetic field on the transmission line will

induce both voltage and current sources along the line and ,

hence , both types of sources must be considered .

A second mechanism for the excitation of the various

modes is through the reflection coefficient matrices ,

and p . As has been discussed , the i ,j element of

o indicates the magnitude of the ~th reflected mode

excited by the ~
th mode incident on a load . With the

choice of ~ in Equation (61) , the first row of the ~ matrix

indicates the excitation of other differential modes due to

the bulk mode incident on the load .
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If p is a diagonal matrix , then there is no mode

conversion at the load. An incident bulk mode would be

reflected as a bulk mode . If the excitation were purely

bulk in nature, as excited by the voltage of Equation (65),

then only a bulk wave would exist on the line . In examining

Equation (52), it is evident that p

2. 

will be a diagonal

matrix if the matrix (Z2. + Z ) 1 
~~ 

- Zc) is the

identity matrix. This will happen if Z2. equals zero

(all lines shorted together and grounded) . Generally ,

however , it is to be expected that the reflection coef—

ficient is not a diagonal matrix.

There is one interesting case where p is diagonal ,

due to assumed symmetries in the characteristic impedance

matrix. Suppose that a multicoriductor cable consists of

N identical wires which are randomly positioned within

the cable (ref. 19). If the cable length is sufficiently

long compared with the distance over which the wires ’

positions change in the cable , it is possible to then

define the capacitive coefficient matrix using only two

numbers: 1) an average capacitance coefficient along the

d iagonal , and 2) an average of the off—diagonal terms .

19. Morgan , M .A., and F.M. Tesche ,”StatistiCal Analysis of
Critical Load Excitations Induced on a Random Cable
System by an Incident Driving Field: Basic Concepts
and Methodology ,” AFWL-TR-75-281, Air Force Weapons
Laboratory , Kirtland Air Force Base , NM , July 1975.
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With the assumption of a single propagation velocity ,

the above conditions lead to a characteristic impedance

matrix which has the elements = =
i,i i,j

where and Z2 are the two complex impedances which

describe this randomly laid line. If the load impedance

matrix is also diagonal with all impedances the same, then

the matrix (~ 2. + !
C
)
~~~ 

(~~ 
- 

~~) also has a diagonally

symmetric form, with all diagonal terms the same , and all

off-diagonal terms equal. The multiplication of this

resulting matrix by ~ and ~~~~ as in Equation (52), then

yields a diagonal matrix for ~~~~~.

The restrictions places on the load impedances and

the transmission line geometry for assuring a diagonal

reflection coefficient are rather severe, so , in the actual

case, it is to be expected that there will be mode conver-

sion at the loads of the multiconductor line. In order to

attempt to model the bulk current on a multiconductor line

by a single line , it is useful to extract the bulk—bulk

mode reflection coefficient from the ~ matrix and then

require that the single line model have the same reflection

coefficient at the load .

For the special choice of the eigenmodes on the

transmission line and the resulting ~ matrix in Equation

(6 1) ,  the bulk mode reflection coefficient at a load is
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given by the i = 1 , j = 1 element of the reflection

coefficient matrix , p, . Denoting this reflection coef-

ficient as p
2. 

and equating to the sinale line
1,1

reflection coefficient of Equation (57), we obtain

z2. — 
z

• p 2. = 
z ÷ 

= p
2. (66)

c 1,1

where Z~ and Zc are the load impedance and characteristic

impedance of the single wire line. This last equation may

be solved for the single line load impedance as

1+ p
2

= 
1,1 (67)

1. c ,
.1. — p 2.1,1

With Equation (67) the load impedance of the single

wire transmission line is found in terms of the load

and characteristic impedances of a multiconductor trans--

mission line. It is still necessary, however, to determine

an appropria te value for the s ingle line character istic

impedance , Z~

On the single wire transmission line , the charac-

teristic impedance rela tes vol tage and current  as

V~ (z) = Zc I~~
(z) (68)
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where the (÷) sign refers to the forward propagating waves

on the line. Since we wish the single line current 1(z)

• to behave similarly to the bulk current on the multi-

conductor line, IB (x) , we can equate the forward propa-

gating components as

I~~(z) = I~~(z) = I~~(z) (69)

where IT(z) represents the individual forward propa-

gating components of the current on the ~
th wire .

Similarly, we can define an appropriate single line

forward propagating voltage , V~~(x) , by averag ing over

the elements of the multiconductor line voltage , ~Y+ (z)

as 
-

- 

- 

V~ (z) = V~~(z) (70)

With the forward propagating single line voltages

and cur rent  thus defined , the single line characteristic

impedance may be defined as

+ 
E Vt (z)

z = 
V (z) 

= 
1=1 (71)

c I~~(z) 
N

N E I~~(z)
i=l ~
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From Equations (~+J ) and (48), the forward propagating

multiconductor voltages and currents can be identified as

= Z ~ e
’
~~ ~~ (72a)

and

= ~ e
’
~~ ~~ (72b)

Thus , Equation (71) formally becomes

N

Z ~ e
’
~ ~~~i=l c 1

Z = 
N (73)

N E ~~~~~~~~~~~~
i=l 1

Note that this definition is rather undesirable , since there

is a dependence on the line position z , as well as the

mode excitation , c~ . Ideally, a characteristic impedance

should not depend upon these parameters.

Considerable s impl i f ication resul ts if it is poss ible

to identif y one mode which is the predominant bulk mode.

Letting 
~l 

be the bulk rLode and be its corresponding

eigenvalue , Equation (73) c-n be simplified to give

N

(: ~ 0l
])
~~ 

e~~~1
Z

z = 
i-l ( 7 4)

C N

N (: 
~~l

h
i) 

e

_
~~1

Z
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since the sums of the other current modes and voltage

modes are very small , because, by definition , they

are differential modes which do not contribute to the bulk

current.

In this last equation , it is now possible to eliminate

the mode excitation term, and the exponential propa-

gation term, since they are both scalars , to yield the

following equation for the equivalent single line impedance :

•E ~
‘
c ~ i i

= 
i’=l

N 
~~~~ 

~~~~i=l

If , as discussed previously, it is assumed that only

single velocity waves propagate on the line , so that the

current eigenmodes can be chosen to have the form given

by Equation (61), the bulk mode will then be a

constant vector. If the characteristic impedance matrix

has the form Z~ - 
= Z1 and Z~ - 

= Z
2 which is a

1, 1 1,3
consequence of a random lay cable configuration , the single

line characteristic impedance can then be expressed as

Z
1 
+ (N—i)

N 
(76)

which is simply the average of a row ‘or a column ) of the

multiconductor characteristic impedance matrix , .
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As an example of a calculation using this bulk current

concept , consider a seven—wire transmission line having a

cross section shown in Figure 22. For this line configura-

tion , the capacitive coefficient matrix ~ as defined in

refs. (12) and (13) and calculated by Chang (ref. 20)

takes the following form :

5.54 — .91 — .91 — .91 — .91 — .91 — .91

— .91 4.83 —1.08 — .02 — .003 — .02 — .08

— .91 —1.08 4.83 —1.08 — .02 — .003 — .02

C = io~~~ ~ -.91 -.02 —1.08 4.83 -1.08 -.02 -.003 farads/
meter

— .~~l — .003 — .02 —1.08 4.E’3 —1.08 — .02

— .91 — .02 — .003 — .02 —1.08 4.83 —1.08

— .91 — .08 — .02 — .003 — .02 —1.08 4.83~ 
-

•

The inductance matrix ~ is calculated from the

inverse of via Equation (35) and assuming a propagation

v-~~ city of v c = 3x108 rneters/sec , the ~ matrix

takes on the form :

20. Chanci , S., T.~~. Liu and F.M . ‘resche , “Calculation of
the Per-Unit-Lencith Capacitance Matrix for Shielded
Insula ted W ires ,” AFWL-TR—77—89 , Air Force Ts7eapan 5 Labora—
tory , Kir tland Air Force Base , MM , April 1977.
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Wire Radius r. = .2 Dielectric Insulation
1 Radius r0 = 1

~~~= 2.0

I

S .

~~~Reference ConductorRadius R 10

Figure 22. Cross Section of Seven Wire
Transmission Line

84

~ 

~-~
•

-~~~~_; 
~~~~•  -~ 

- - •
_ 



-5—, -~~ ------- — __ - --— - ---,--——.-
—---- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -5--- - -- — - -----5— — --5—- -— 5~_-5_•

3.04 1.05 1.05 1.05 1.05 1.05 1.05

1.05 2.93 .97 .53 .44 .53 .97

1.05 .97 2.93 .97 .53 .44 .53

L = l0 7x 1.05 .53 .97 2.93 .97 .53 .44 henrys/
meter

1.05 .44 .53 .97 2.93 .97 .53

1.05 .53 .44 .53 .97 2.93 .97

1.05 .97 .53 .44 .53 .97 2.93

Note that the propagation velocity will be sightly slower

the ~ the velocity of light in free space due to the dielectric

present around the wires. This effect, however , is neglected

in this illustrative example.

The eigenvalues of ~ ! thus become

2 8 2
= (s/3xlO )

for i = 1 to 7. Using the current eiaenmodes defined by

• Equation (61), and assuming the load impedance to consist

of 100 ohms from each wire to ground (i.e., 
~~ 

= 100 U),

Equation (52 ) may be used to f ind the reflection

matrix 
~ 

. In this calculation , the characteristic impedance

matrix is found from Equation (47) to have the form
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• 91.2 31.5 31.5 31.5 31.5 31.5 31.5

31.5 88.0 29.3 15.9 13.3 15.9 29.3

31.5 29.3 88.0 29.3 15.9 13.3 15.9

~c 
= 315 15.9 29.3 88.0 29.3 15.9 13.3 ohms

31.5 13.3 15.9 29.3 88.0 29.3 15.9

31.5 15.9 13.3 15.9 29.3 88.0 29.3

31.5 29.3 15.9 13.3 15.9 29.3 88.0

The result of these relatively simple calculations is

the following reflection coefficient matrix at the load

— .39 .12 .12 .12 .12 .12 .12

— .01 .23 — .04 .06 .07 .06 — .04

— .01 — .04 .23 — .04 .06 .07 .06

p
2. 

= — .01 .06 — .04 .23 — .04 .06 .07

— .01 .07 .06 — .04 .23 — .04 .06

— .01 .06 .07 .06 — .04 .23 — .04

— .01 — .04 .06 .07 .06 — .04 .23

Note that the magnitude of the bulk-bulk reflection

coefficient p~ is substantially larger than the other off
A. 
1, L.

diaaonal terms in p . In addit ion , there is a high degree of

symmetry in the matrix p , although it is not completely sym-

metric about the diagonal. Had another set of load impedances

been cho~en which consisted of a different impedance loading each

wire , the symmetries found in ~ would be less pronounced .
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Since we are interested in the bulk—bulk  ref lect ion

coefficient , it is interesting to compute p
2. 

under the

assumptions that the multiconductor line randomly changes

the individual wire locations. Averaging together the

diagonal terms in the per-unit-length ~ matrix and perform-

ing a similar average for the off-diagonal terms yields the

following capacitive coefficient matrix

4.93 — .57 — .57 — .57 — .57 — .57 — .57

— .57 4.93 — .57 — .57 — .57 — .57 — .57

-.57 — .57 4.93 — .57 -.57 — .57 - .57

~~=l0~~~ x — .57 — .57 — .57 4.93 — .57 — .57 — .57 farads/
meter

— .57 — .57 — .57 — .57 4.93 — .57 — .57

-.57 -.57 -.57 — .57 — .57 4.93 - .57

— .57 — .57 — .57 — .57 — .57 — .57 4.93

and the following characteristic impedance matrix:

83.8 23.3 23.3 23.3 23.3 23.3 23.3

23.2 83.8 23.3 23.3 23.3 23.3 23.3

23.3 23.3 83.8 23.3 23.3 23.3 23.3

= 23.3 23.3 23.3 83.8 23.3 23.3 23.3 ohms

23.3 23.3 23.3 23.3 83.8 23.3 23.3

23.3 23.3 23.3 23.3 23.3 83.8 23.3

23.3 23.3 23.3 23.3 23.3 23.3 83.8

Other types of averaging procedures can also be envisioned

for this purpose. A detailed study of the best method for

determin ing the average line properties has yet tà be made.

87 

~~~~
- -
~~ •



Those, when combined with the previous 100Q load

impedance matrix , yield the following reflection coefficient

matrix

— .38

— .38 0

— .38

— .38
2.

— .38

0 — .38

— .38

Notice that p 2 is almost identical to that for the
1,1

controlled lay cable.

Using Equation (76) to define an appropriate single

line impedance , we obtain

z~ = 

z 1 
+ (N—l) Z

2 
= 

83.8 ~
. 6x23.3 31.96 ohms

The equivalent single line load is then directly computed

from Equation (67 ) as

1 + p
~~~

= Z~ 1 — 

1 , 1 

= 31.96 ; :~ 
= 14.29 ohms

2.11
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These values of Z~ and Zc are then used in the single

line model to represent bulk current behavior on a multi-

conductor line.

As an example of the behavior of load currents in the

time domain , the multiconductor line in Figure 2la was

assumed to be excited with identical line voltages which

had a unit step function time dependence . The transmission

line length was 2. = 1 meter and both the source and

load impedances were taken as 100 ohms from the wires to

ground . Figure 23 shows the transient behavior of the total

(“bulk”) current flowing into the load , as evaluated from

Equation (59) and converted to the time domain using the

fast Fourier transform (FFT).

A corresponding calculation was performed for the

single line model using the characteristic impedance and

load impedances defined above . The transient behavior for

the single line load current was virtually indistinguishable

from that of the multiconductor analysis , a fact not sur-

prising in view of the symmetric excitation and loading of

the line.

By changing one or more of the load impedances in

the reflection coefficient for the bulk current ,

and the single line load impedance , Z , willA.l 1  C

also change . For six wire loads fixed at 100 ohms and the
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Figure 23. Step Function Response of Total Load
Current of Mul ticonductor Line wi th
L = 1 Meter and Source and Load Impe-
dances of 100 2 to Ground
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seventh allowed to vary , Figure 24 shows the resulting reflec-

tion coefficient variation. Also plotted is the variation

of the equivalent load impedance. These quantities are

plotted as a function of the load impedance of wire #7,

denoted by Z
7,7

It is interesting to compare the transient response

of the bulk current with the single line current of the load

for the case of nonsyminetric loading . In Figure 25, this

comparison is made for a load impedance of Z9. = l000~ 2
7 , 7

on wire 7. The source impedance remained unchanged at l4.29~

for the single wire line and = 100 13 for the multi--

conductor case. For this case, the effective single line

impedance from Equation (67) is computed to be = l 6 . 4 7~~ -

Figure 26 shows similar results for a 1 c2 load on

wire 7 of the multiconductor line . This corresponds to

z9. = l0.0~2 for the equivalent load .

From an examination of these last two figures , it

may be seen that the single line model will predict the bulk

response with an error of less than 10% . It mus t be empha-

sized , however , that these studies were Derformec9. with a step

function excitation of id ealized loads and a high degree o~

symmetry built into the analysis throuqh the various assump—

tions employed. Additional studies with double exponential

and damped sinusoid waveforms should be performed before it  is

oossible to say with a crood degree of certainty what the

con f idence levels are in this approach to bulk  curren t modelin g .
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SECTION V

CONCLUS ION

This report has presented a number of improvements of

single—wire transmission line theory for use in EMP internal

interaction calculations. The case of a transmission line

perturbation due to a nearby obstacle has been considered

and var ious curves of the voltage reflection coefficien t

on the transmission line have been presented as a function

of the equivalent line capaci tance and inductance of the

obstacle.

In addition , the effects of multiple loading due to

two or more perturbing obstacles on a transmission line of

finite length have been considered. Good agreement between

the pass and stop bands calculated for this case and those

of an infinite transmission line periodically loaded with

similar obstacles has been observed . Both transient and

time harmonic results for the load current on the periodically

loaded, finite length transmission line have been computed

for a typical transmission line having typical parameters.

Finally , we have investigated the possiblity of

modeling the bulk current on a multiconductor transmission

line by using a single—wire transmission line approximation

and assuming that the total or “bulk” current on the multi-

conductor line has the same reflection coefficient as does

the current on the single—wire transmission line. Using this
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approach , it is possible to determine an equivalent single-

line characteristic impedance and single—line load impedance

for the approximate model. Comparisons of the bulk current

response and the single-wire current response for a step

function excitation have been presented and the agreeement

is reasonable. The responses for a damped sine and double

exponential waveform still need to be studied.



REFERENCES

1. Tesche, F.M., et al., “Internal Interaction Analysis:
Topological Concepts and Needed Model Improvements,”
AFWL-TR-75-282, Air Force Weapons Laboratory , Kirtland
Air Force Base, NM , October 1975.

2. Tesche, F.M., et al., “Evaluation of Present Internal
EMP Interaction Technology : Description of Needed
Improvements,” AFWL—TR—75-288, Air Force Weapons
Laboratory, Kirtland Air Force Base, NM , October 1975.

3. Boeing Aircraft Cort,oration , “Common Mode Model Development
for Complex Cable Systems,” Boeing Report D224—10015—4,
June 19, 1973.

4. Tesche, F.M., and T.K. Liu, “An Electric Model for a
Cable Clamp on a Single Wire Transmission Line,” APWL—
TR—76—325, Air Force Weapons Laboratory, Kirtland Air
Force Base, NM , December 1976.

5. Coen, S., T.K. Liu and F.M. Tesche, “Calculation of the
Equivalent Capacitance of a Rib near a Single—Wire
Transmission Line,” AFWL—TR—77— 60, Air Force Weapons
Laboratory, Kirtland Air Force Base, NM ,. February 1977.

6. Lee, K.S.H., and F.C. Yang, “A Wire Passina by a Circular
Aperture in an Infinite Ground Plane,” AFWL-TR-77—52
Air Force Weapons Laboratory, Kirtland Air Force Base,
NM , June 1977.

7. Lam, J., “Equivalent Lumped Parameters for a Bend in a
Two-Wire Transmission Line,” AFWL-TR-77-5, Air Force
Weapons Laboratory, Kirtland Air Force Base, NM,
January 1977.

8. Lam, 3., “Propagation. Characteristics of a Periodically
Loaded Transmission Line,” AFWL-TR—76—324 , Air Force
Weapons Laboratory, Kirtland Air Force Base, NM ,
December 1976.

9. Raino, S.., and 3. Whinnery, Fields and Waves in Modern
Radio, John Wiley & Sons, New York , 1964.

10. Seshu , S.., and N. Balabanian, Linear Network Analysis,
John Wiley & Sons, New York , 1959.

97

~~~ :~~~~ . — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~- -~ — - - . ___________— —~-— -—-.~~~~~~~~ -—- ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 

‘
~ 

~~~~ 
•—

~ ..



______  

—

11. King, R.W.P., Transmission—Line Theory , Dover, 1965.

12. Kajfez, D., “Multi—Conductor Transmission Lines,”
EMP Interaction Note Series, Note 151, A ir Force
Weapons Laboratory, Kirtland Air Force Base, NM,
June 1972.

13. Liu, T., “Electromagnetic Coupling between Mu].ticonductor
Transmission Lines in a Homogeneous Medium,” AFWL—TR-76—
333, Air Force Weapons Laboratory, Kirtland Air Force
Base , NM.

14. Paul, C.R., “On Uniform Multimode Transmission Lines,”
IEEE Trans. M.T.T., Vol. MTT—21, No. 8, August 1973,
pp. 556—558.

15. Paul, C.R., “Efficient Numerical Computation of the
Frequency Response of Cables Illuminated by an Electro-
magnetic Field,” IEEE Trans. M.T.T., Vol. MTT—52, No. 4,
April 1974 , pp. 454—457.

16. Paul, C.R., “Useful Matrix Chain Parameter Identities
for the Analysis of Multiconductor Transmission Lines,”
IEEE Trans. M.T.T., September 1975, pp. 756-760.

17. Frankel, S., Cable and Multi—Conductor Transmission
Analysis, Harry Diamond Laboratories , HDL-TR-091-l,
June 1974.

18. C.E. Baum , T.K. Liu , F.M. Tesche and S.K. Chancy, “Numerical
Results for MulticonductOr TranSmisSlOfl—LLfle Networks,’
AFWL—TR—77—123 , Air Force Weapons Laboratory , Kirtland
Air Force Base, NM, June 1977.

19. Morgan, M.A., and F.M. Tesche,”Stati~tical Analysis of
Critical Load Excitations Induced on a Random Cable
System by an Incident Driving Field: Basic Concepts
and Methodology, ” AFWL-TR-75-281, Air Force Weapons
Laboratory, Kirtland Air Force Base, NM, July 1975.

20. Chancy , S., T.K. Liu and F.M. Tesche , “Calculation of
the Per—Unit—Lenath Capacitance Matrix for Shielded
Insulated Wires , ” AFWL-T R—77- 89 , Air Force Weapons Labora-
tory , Kirtland Air Force Base, NM , Ap ril 1977.

98

ill

— -
~~~~~~~~~~

- - -  —
~~~~~~~~~~~ -~ ~~~~~~~~

— - . - ~~~~~~~~~~~~~


